
Copyright: Richard Foote Consulting
Services 1

Oracle BOracle B--Tree Index Internals:Tree Index Internals:
Rebuilding The TruthRebuilding The Truth

Richard Foote

Copyright: Richard Foote Consulting
Services 2

ObjectivesObjectives

� Dispel many myths associated with Oracle
B-Tree Indexes

� Explain how to investigate index internals
� Explain and prove how Oracle B-Tree

Indexes work
� Explain when index rebuilds might be

appropriate

Copyright: Richard Foote Consulting
Services 3

““ExpertExpert”” quotes regarding Indexesquotes regarding Indexes
� “Note that Oracle indexes will spawn to a fourth

level only in areas of the index where a massive
insert has occurred, such that 99% of the index
has three levels, but the index is reported as
having four levels. ” Don Burleson:
comp.databases.oracle.server newsgroup post dated
31st January 2003

� “If the index clustering factor is high, an index
rebuild may be beneficial” Don Burleson: Inside
Oracle Indexing dated December 2003 at
www.DBAzine.com

Copyright: Richard Foote Consulting
Services 4

““ExpertExpert”” quotes regarding Indexesquotes regarding Indexes
� “The binary height increases mainly due to the size of the

table and the fact that the range of values in the indexed
columns is very narrow”. Richard Niemiec Oracle
Performance Tuning 1999.

� “The index will be imbalanced if the growth is all on one
side such as when using sequence numbers as keys…
Reading the new entries will take longer” Richard Niemiec
Tuning for the Advanced DBA; Others will Require Oxygen 2001

� “This tells us a lot about indexes, but what interests me is
the space the index is taking, what percentage of that is
really being used and what space is unusable because of
delete actions. Remember, that when rows are deleted, the
space is not re-used in the index.” John Wang: Resizing Your
Indexes When Every Byte Counts at www.DBAzine.com

Copyright: Richard Foote Consulting
Services 5

““ExpertExpert”” quotes regarding Indexesquotes regarding Indexes
� Index diagram showing an “unbalanced” Oracle index with leaf

nodes to the right of the index structure having more levels than
leaf nodes to the left. Mike Hordila: Setting Up An Automated Index
Rebuilding System at otn.oracle.com

� “Deleted space is not reclaimed automatically unless there is an
exact match key inserted. This leads to index broadening and
increase in the indexes clustering factor. You need to reorganize
to reclaim white space. Generally rebuild index when the
clustering factor exceeds eight times the number of dirty blocks in
the base table, when the levels exceed two or when there are
excessive brown nodes in the index”” Mike Ault Advanced Oracle
Tuning Seminar at www.tusc.com/oracle/download/author_aultm.html

Copyright: Richard Foote Consulting
Services 6

Classic Oracle Index MythsClassic Oracle Index Myths
� Oracle B-tree indexes can become “unbalanced” over time

and need to be rebuilt
� Deleted space in an index is “deadwood” and over time

requires the index to be rebuilt
� If an index reaches “x” number of levels, it becomes

inefficient and requires the index to be rebuilt
� If an index has a poor clustering factor, the index needs to

be rebuilt
� To improve performance, indexes need to be regularly

rebuilt

Copyright: Richard Foote Consulting
Services 7

Basic BBasic B--Tree IndexTree Index
Null – B1
Move – B2

Null – L1
Bolan – L2
Floyd – L3

Move – L4
Queen – L5
Ziggy – L6

ABBA rowid
ACDC rowid

Bolan rowid
Bowie rowid
Clash rowid

Floyd rowid
Kinks rowid
Lennon rowid

Move rowid
Police rowid
Pop rowid

Queen rowid
Reed rowid
Velvet rowid

Ziggy rowid

Root Block

Branch Blocks

Leaf Blocks

Copyright: Richard Foote Consulting
Services 8

Index FundamentalsIndex Fundamentals

� Oracle’s implements a form of B*Tree index
� Oracle’s B-Tree index is always balanced. Always.
� Index entries must always be ordered.
� An update consists of a delete and an insert
� Each leaf block has pointers to next/previous blocks
� Each leaf block contains the index entry with

corresponding rowid
� Index scans use ‘sequential’, single block reads

(with exception of Fast Full Index Scan)

Copyright: Richard Foote Consulting
Services 9

TreedumpTreedump
alter session set events ‘immediate trace name treedump level 12345’;
where 12345 is the index object id

----- begin tree dump
branch: 0x8405dde 138436062 (0: nrow: 3, level: 3)

branch: 0xdc11022 230756386 (-1: nrow: 219, level: 2)
branch: 0x8405f15 138436373 (-1: nrow: 138, level: 1)

leaf: 0x8405ddf 138436063 (-1: nrow: 21 rrow: 21)
leaf: 0x8405de0 138436064 (0: nrow: 18 rrow: 13)
leaf: 0x8405de2 138436066 (1: nrow: 15 rrow: 15)

block type (branch or leaf) and corresponding rdba,
position within previous level block (starting at –1 except root starting at 0)
nrows: number of all index entries
rrows: number of current index entries
level : branch block level (leaf block implicitly 0)

� Some versions of Oracle displays a block dump of all index leaf blocks
� Treedumps perfectly highlight that indexes are always balanced and the

number of levels to all leaf blocks is always consistent

Copyright: Richard Foote Consulting
Services 10

Block DumpBlock Dump
� To create formatted dumps of blocks:

alter system dump datafile 6 block 10;
alter system dump datafile 6 block min 5 block max 10

� Creates the dump file in user_background_dest

� To determine the datafile and block from a rba:

select DBMS_UTILITY.DATA_BLOCK_ADDRESS_FILE(138436069),
DBMS_UTILITY.DATA_BLOCK_ADDRESS_BLOCK(138436069)

from dual;

Copyright: Richard Foote Consulting
Services 11

Block HeaderBlock Header
Start dump data blocks tsn: 39 file#: 2 minblk 467 maxblk 467
buffer tsn: 39 rdba: 0x008001d3 (2/467)
scn: 0x0000.043be543 seq: 0x02 flg: 0x00 tail: 0xe5430602
frmt: 0x02 chkval: 0x0000 type: 0x06=trans data
Block header dump: 0x008001d3
Object id on Block? Y
seg/obj: 0x7c74 csc: 0x00.43be543 itc: 1 flg: - typ: 2 - INDEX

fsl: 0 fnx: 0x0 ver: 0x01
Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x000d.007.00007f63 0x03401186.067c.03 C--- 0 scn 0x0000.043be543

rdba - relative database block address of the branch block (file no/block no)
scn – system change number of the block when last changed
seq – number of block changes
type – block type
seg/obj – object id
typ – segment type (index)
Itl – Interested transaction Slots (default 2 for leaf blocks) including slot id,

transaction id, undo block address, flag and locking info and scn of transaction

Copyright: Richard Foote Consulting
Services 12

Common Index Header SectionCommon Index Header Section
header address 50794564=0x3071044
kdxcolev 1
KDXCOLEV Flags = - - -
kdxcolok 0
kdxcoopc 0x80: opcode=0: iot flags=--- is converted=Y
kdxconco 2
kdxcosdc 1
kdxconro 237
kdxcofbo 502=0x1f6
kdxcofeo 3120=0xc30
kdxcoavs 2618

kdxcolev: index level (0 represents leaf blocks)
kdxcolok: denotes whether structural block transaction is occurring
kdxcoopc: internal operation code
kdxconco: index column count
kdxcosdc: count of index structural changes involving block
kdxconro: number of index entries (does not include kdxbrlmc pointer)
kdxcofbo: offset to beginning of free space within block
kdxcofeo: offset to the end of free space (ie. first portion of block containing index data)
kdxcoavs: available space in block (effectively area between the two fields above)

Copyright: Richard Foote Consulting
Services 13

Branch Header SectionBranch Header Section
kdxbrlmc 8388627=0x800013
kdxbrsno 92
kdxbrbksz 8060

kdxbrlmc: block address if index value is less than the first (row#0) value
kdxbrsno: last index entry to be modified
kdxbrbksz: size of usable block space

Copyright: Richard Foote Consulting
Services 14

Leaf Header SectionLeaf Header Section
kdxlespl 0
kdxlende 0
kdxlenxt 8388628=0x800014
kdxleprv 8389306=0x8002ba
kdxledsz 0
kdxlebksz 8036

kdxlespl: bytes of uncommitted data at time of block split that have been cleaned out
kdxlende: number of deleted entries
kdxlenxt: pointer to the next leaf block in the index structure via corresponding rba
kdxleprv: pointer to the previous leaf block in the index structure via corresponding rba
kdxlebksz: usable block space (by default less than branch due to the additional ITL entry)

Copyright: Richard Foote Consulting
Services 15

Branch EntriesBranch Entries
row#0[4813] dba: 8388865=0x800101
col 0; len 12; (12): 41 6c 61 64 64 69 6e 20 53 61 6e 65
col 1; len 4; (4): 00 80 00 f6
row#1[4578] dba: 8389115=0x8001fb
col 0; len 12; (12): 41 6c 61 64 64 69 6e 20 53 61 6e 65
col 1; len 4; (4): 00 80 01 f1

� Row number (starting at 0) [starting location in block] dba
� Column number followed by column length followed by column value
� Repeated for each indexed index
� Repeated for each branch entry

� Note: column value is abbreviated to smallest value that uniquely
defines path

Copyright: Richard Foote Consulting
Services 16

Leaf EntriesLeaf Entries

row#0[4616] flag: ----S, lock: 2
col 0; len 3; (3): 4c 6f 77
col 1; len 6; (6): 00 80 02 b5 00 6a

� row number (starting at 0) followed by [starting location within block]
followed by various flags (locking information, deletion flag etc.)

� index column number (starting at 0) followed by column length
followed by column value

� repeated for each indexed column

� repeated for each index entry

Copyright: Richard Foote Consulting
Services 17

Update of Index EntryUpdate of Index Entry
SQL> create table test_update (id number, name varchar2(10));
Table created.
SQL> create index test_update_idx on test_update (name);
Index created.
SQL> insert into test_update values (1, 'BOWIE');
1 row created.
SQL> commit;
Commit complete.
SQL> update test_update set name = 'ZIGGY' where id = 1;
1 row updated.
SQL> commit;
Commit complete.
SQL> select file_id, block_id from dba_extents where segment_name='TEST_UPDATE_IDX';
FILE_ID BLOCK_ID
---------- ---------------

12 83193
SQL> alter system dump datafile 12 block 83194;
System altered.

Note: add 1 to block_id else the segment header is dumped

Copyright: Richard Foote Consulting
Services 18

Block Dump After Index UpdateBlock Dump After Index Update
kdxconco 2
kdxcosdc 0
kdxconro 2
kdxcofbo 40=0x28
kdxcofeo 8006=0x1f46
kdxcoavs 7966
kdxlespl 0
kdxlende 1
kdxlenxt 0=0x0
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8036
row#0[8021] flag: ---D-, lock: 2 => deleted index entry
col 0; len 5; (5): 42 4f 57 49 45
col 1; len 6; (6): 00 80 05 0a 00 00
row#1[8006] flag: -----, lock: 2
col 0; len 5; (5): 5a 49 47 47 59 => new index entry
col 1; len 6; (6): 00 80 05 0a 00 00

Copyright: Richard Foote Consulting
Services 19

Index StatisticsIndex Statistics

� dba_indexes
– analyze command, or better still
– dbms_stats package

� index_stats
– analyze index index_name validate structure;
– resource intensive, locking issues

� v$segment_statistics (9.2)
– statistics_level = typical (or all)

Copyright: Richard Foote Consulting
Services 20

Statistics NotesStatistics Notes
� blevel (dba_indexes) vs. height (index_stats)
� blocks allocated, not necessarily used
� lf_rows_len inclusive of row overheads (e.g. 12 bytes single

column index)
� pct_used amount of space currently used in index structure:

(used_space/btree_space)*100. Note: index wide
� Most index stats are inclusive of deleted entries:

– non-deleted rows = lf_rows – del_lf_rows
– pct_used by non-deleted rows = ((used_space – del_lf_rows_len) /

btree_space) * 100
� And then there’s the clustering_factor

Copyright: Richard Foote Consulting
Services 21

Clustering FactorClustering Factor
� A vital statistic used by the CBO
� Determines the relative order of the table in relation to the

index
� CF value corresponds to likely physical I/0s or blocks

visited during a full index scan (note same block could be
visited many times)

� If the same block is read consecutively then Oracle
assumes only the 1 physical I/0 is necessary

� The better the CF, the more efficient the access via the
corresponding index as less physical I/Os are likely

� “Good” CF generally has value closer to blocks in table
� “Bad” CF generally has a value closer to rows in table

Copyright: Richard Foote Consulting
Services 22

Index with Bad Clustering FactorIndex with Bad Clustering Factor

Copyright: Richard Foote Consulting
Services 23

Index with Good Clustering FactorIndex with Good Clustering Factor

Copyright: Richard Foote Consulting
Services 24

How To Improve The CFHow To Improve The CF
� As some of the “expert” quotes suggest, rebuild index if

CP is poor is common advice
� Unfortunately, as neither table nor index order changes,

the net effect is “disappointing”
� To improve the CF, it’s the table that must be rebuilt

(and reordered)
� If table has multiple indexes, careful consideration

needs to be given by which index to order table
� Pre-fetch index reads improves poor CF performance
� Rebuilding an index simply because it has a CF over a

certain threshold is futile and a silly myth

Copyright: Richard Foote Consulting
Services 25

Index Creation and PCTFREEIndex Creation and PCTFREE

� When an index is created, Oracle reserves the pctfree
value as free space

� pctfree has a default of 10% resulting in 10% of an
index remaining free after creation

� Why ?
� To reduce and delay the occurrence of index block splits
� If there isn’t sufficient space in an index block for the

new entry, a block split is performed

Copyright: Richard Foote Consulting
Services 26

5050--50 Block Split50 Block Split
1
2
3
4

1
2
3
4
5

Copyright: Richard Foote Consulting
Services 27

5050--50 Leaf Block Block Steps50 Leaf Block Block Steps
An index block split is a relatively expensive operation:

1. Allocate new index block from index freelist
2. Redistribute block so the lower half (by volume) of index entries

remain in current block and move the other half into the new block
3. Insert the new index entry into appropriate leaf block
4. Update the previously full block such that its “next leaf block

pointer” (kdxlenxt) references the new block
5. Update the leaf block that was the right of the previously full block

such that its “previous leaf block pointer”(kdxleprv) also points to
the new block

6. Update the branch block that references the full block and add a
new entry to point to the new leaf block (effectively the lowest
value in the new leaf block)

Copyright: Richard Foote Consulting
Services 28

5050--50 Branch Block Splits50 Branch Block Splits
Insert operation is even more expensive if the
corresponding branch block is also full:

1. Allocate a new index block from the freelist
2. Redistribute the index entries in the branch block that is currently

full such that half of the branch entries (the greater values) are
placed in the new block

3. Insert the new branch entry into the appropriate branch block
4. Update the branch block in the level above and add a new entry

to point to the new branch block

Copyright: Richard Foote Consulting
Services 29

5050--50 Root Block Split50 Root Block Split
Root block is just a special case of a branch block:

1. Allocate two new blocks from the freelist
2. Redistributed the entries in the root block such that half the entries are

placed in one new block, the other half in the other block
3. Update the root block such that it now references the two new blocks

The root block is always physically the same block.

The root block split is the only time when the height of index increases

Therefore an index must always be balanced. Always !!

Suggestions that Oracle indexes become unbalanced are another silly
myth, made by those that don’t understand index block splits.

Copyright: Richard Foote Consulting
Services 30

Root Block Always The SameRoot Block Always The Same
SQL> create table same_root (id number, value varchar2(10));
Table created.
SQL> insert into same_root values (1, 'Bowie');
1 row created.
SQL> commit;
Commit complete.
SQL> create index same_root_idx on same_root(id);
Index created.

----- begin tree dump
leaf: 0x800382 8389506 (0: nrow: 1 rrow: 1)
----- end tree dump

Then add enough rows to cause the index structure grow and root block to split….

----- begin tree dump
branch: 0x800382 8389506 (0: nrow: 2, level: 1)

leaf: 0x800383 8389507 (-1: nrow: 540 rrow: 540)
leaf: 0x800384 8389508 (0: nrow: 460 rrow: 460)

----- end tree dump

Copyright: Richard Foote Consulting
Services 31

9090--10 Block Splits10 Block Splits

� If the new insert index entry is the maximum
value, a 90-10 block split is performed

� Reduces wastage of space for index with
monotonically increasing values

� Rather than leaving behind ½ empty blocks, full
index blocks are generated

� I prefer to call them 99-1 block splits as 90-10 is
misleading

Copyright: Richard Foote Consulting
Services 32

9090--10 Splits10 Splits
1
2
3
4

1
2
3
4
5

Copyright: Richard Foote Consulting
Services 33

9090--10 Splits With 9i10 Splits With 9i
Spot the difference: Case 1
SQL> create table split_90_a (id number, value varchar2(10));
Table created.
SQL> create index split_90_a_idx on split_90_a(id);
Index created.
SQL> begin
2 for i in 1..10000 loop
3 insert into split_90_a values (i, 'Bowie');
4 end loop;
5 commit;
6 end;
7 /
PL/SQL procedure successfully completed.
SQL> analyze index split_90_a_idx validate structure;
Index analyzed.
SQL> select lf_blks, pct_used from index_stats;

LF_BLKS PCT_USED
---------- ----------

19 94

Copyright: Richard Foote Consulting
Services 34

9090--10 Splits With 9i10 Splits With 9i
Spot the difference: Case 2
SQL> create table split_90_a (id number, value varchar2(10));
Table created.
SQL> create index split_90_a_idx on split_90_a(id);
Index created.
SQL> begin
2 for i in 1..10000 loop
3 insert into split_90_a values (i, 'Bowie');
4 commit;
5 end loop;
6 end;
7 /
PL/SQL procedure successfully completed.
SQL> analyze index split_90_a_idx validate structure;
Index analyzed.
SQL> select lf_blks, pct_used from index_stats;

LF_BLKS PCT_USED
---------- ----------

36 51

Copyright: Richard Foote Consulting
Services 35

Deleted Index SpaceDeleted Index Space
� When a delete (or update) is performed, Oracle marks the entry as deleted.
� Relevant portions of a block dump:

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x000d.002.00007f5d 0x03400450.0671.01 CB-- 0 scn 0x0000.043be316
0x02 0x0014.029.00007e87 0x034005a3.0ac2.0e --U- 100 fsc 0x0960.043f9d45

kdxlende 100
kdxlenxt 8388865=0x800101
kdxleprv 0=0x0
kdxledsz 0
kdxlebksz 8036
row#0[4252] flag: ---D-, lock: 2
col 0; len 12; (12): 41 6c 61 64 64 69 6e 20 53 61 6e 65
col 1; len 6; (6): 00 80 00 0b 01 33

� del_lf_rows and del_lf_rows_len in index_stats provide deletion stats

Copyright: Richard Foote Consulting
Services 36

Deleted Space Deleted Space –– Reused ?Reused ?
Create a table/index, insert 10 rows (indexed values 1,2,3,4,5,6,7,8,9,10),
commit, deleted 4 rows (2,4,6,8), commit;

Index_stats shows:

LF_ROWS DEL_LF_ROWS DEL_LF_ROWS_LEN USED_SPACE
-------------- --------------------- ----------------------------- -------------------

10 4 56 140

Treedump shows:

----- begin tree dump
leaf: 0x8002ea 8389354 (0: nrow: 10 rrow: 6)

Block dump shows:

kdxconro 10
kdxlende 4

row#1[8012] flag: ---D-, lock: 2

Copyright: Richard Foote Consulting
Services 37

Deleted Space Deleted Space –– Reused ?Reused ?
Insert a new row (value 100) that is different and not within ranges of those
previously deleted, commit;

index_stats shows:

LF_ROWS DEL_LF_ROWS DEL_LF_ROWS_LEN USED_SPACE
-------------- --------------------- ----------------------------- -------------------

7 0 0 98

Treedump shows:

----- begin tree dump
leaf: 0x8002ea 8389354 (0: nrow: 7 rrow: 7)

Block dump shows:

kdxconro 7
kdxlende 0

All deleted index entries removed

Copyright: Richard Foote Consulting
Services 38

Deleted Index Space Is ReusedDeleted Index Space Is Reused

� The previous example clearly illustrates that
any insert to a leaf block removes all
deleted entries

� In randomly inserted indexes, deleted space
is not an issue as it will eventually be reused

� But wait, there’s more …

Copyright: Richard Foote Consulting
Services 39

Deleted Entries Deleted Entries –– Delayed Block CleanoutDelayed Block Cleanout
Same example as before:

create a table/index, insert values (1,2,3,4,5,6,7,8,9,10), commit;

delete 4 rows, values (2,4,6,8);

alter session set events ‘immediate trace name flush_cache’;

Index_stats shows:

LF_ROWS DEL_LF_ROWS DEL_LF_ROWS_LEN USED_SPACE
-------------- --------------------- ----------------------------- -------------------

6 0 0 84

Treedump shows:

----- begin tree dump
leaf: 0x8002ea 8389354 (0: nrow: 6 rrow: 6)

Block dump shows:

kdxconro 6
kdxlende 0

All deleted index entries removed

Copyright: Richard Foote Consulting
Services 40

Deleted Entries: Delayed Deleted Entries: Delayed
Block CleanoutBlock Cleanout

� Long running transactions may result in dirty
blocks being flushed from memory before a
commit;

� When subsequently accessed, delayed block
cleanout is performed

� Delayed block cleanout results in all
corresponding deleted entries being cleaned out

Copyright: Richard Foote Consulting
Services 41

Deleted Leaf Blocks Deleted Leaf Blocks –– Reused ?Reused ?

Simple example to demonstrate if deleted leaf blocks are reused

SQL> create table test_empty_block (id number, value varchar2(10));

Table created.

SQL> begin

2 for i in 1..10000 loop

3 insert into test_empty_block values (i, 'Bowie');

4 end loop;

5 commit;

6 end;

7 /

PL/SQL procedure successfully completed.

SQL> create index test_empty_block_idx on test_empty_block (id);

Index created.

Copyright: Richard Foote Consulting
Services 42

Deleted Leaf Blocks Deleted Leaf Blocks –– Reused ?Reused ?

SQL> delete test_empty_block where id between 1 and 9990;

9990 rows deleted.

SQL> commit;

Commit complete.

SQL> analyze index test_empty_block_idx validate structure;

Index analyzed.

SQL> select lf_blks, del_lf_rows from index_stats;

LF_BLKS DEL_LF_ROWS

---------- -----------

21 9990

Therefore all blocks except (probably) the last block holding the last 10
values are effectively empty.

Copyright: Richard Foote Consulting
Services 43

Deleted Leaf Blocks Deleted Leaf Blocks –– Reused ?Reused ?
Now reinsert a similar volume but after the last current values
SQL> begin

2 for i in 20000..30000 loop

3 insert into test_empty_block values (i, 'Bowie');

4 end loop;

5 commit;

6 end;

7 /

PL/SQL procedure successfully completed.

SQL> analyze index test_empty_block_idx validate structure;

Index analyzed.

SQL> select lf_blks, del_lf_rows from index_stats;

LF_BLKS DEL_LF_ROWS
---------- -----------

21 0

Note all empty blocks have been reused and deleted rows cleanout.

Copyright: Richard Foote Consulting
Services 44

Empty Blocks Not UnlinkedEmpty Blocks Not Unlinked
Following select statement was executed after the 9990 deletions in previous example

SQL> select /*+ index test_empty_blocks */ * from test_empty_blocks
where id between 1 and 100000;
10 rows selected.

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 TABLE ACCESS (BY INDEX ROWID) OF 'TEST_EMPTY_BLOCKS'
2 1 INDEX (RANGE SCAN) OF 'TEST_EMPTY_BLOCKS_IDX' (NON-UNIQUE)

Statistics
--

0 recursive calls
0 db block gets

28 consistent gets
0 physical reads
0 redo size

549 bytes sent via SQL*Net to client
499 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

10 rows processed

Copyright: Richard Foote Consulting
Services 45

Conclusion: Deleted SpaceConclusion: Deleted Space

� Deleted space is cleaned out by subsequent writes
� Deleted space is cleaned out by delayed block

cleanout
� Fully emptied blocks are placed on freelist and

recycled (although remain in the index structure)
� Suggestions that deleted space can never be reused

are wrong and yet another silly myth

Copyright: Richard Foote Consulting
Services 46

Index FragmentationIndex Fragmentation

Although deleted index space is generally reusable,
there can be wasted space:
– Bug with 90-10 split algorithm in 9i (previously discussed)
– Too high PCTFREE
– Permanent table shrinkage
– Monotonically increasing index values and deletions
– Deletes or Updates that dramatically reduce occurrence

of specific index values
– Large volume of identical index entries

Copyright: Richard Foote Consulting
Services 47

Too High PCTFREEToo High PCTFREE
create index bowie_idx on bowie (id) pctfree 95;

Copyright: Richard Foote Consulting
Services 48

Permanent Table ShrinkagePermanent Table Shrinkage

But note that the table would look as follows:

Therefore it’s the table rather than just the indexes that should be rebuilt.

Current entries

Deleted entries

Copyright: Richard Foote Consulting
Services 49

Monotonically increasing Monotonically increasing
index values and deletionsindex values and deletions

• As previously discussed, fully deleted blocks are recycled

• Therefore it’s sparse deletions with monotonically increasing entries

Current entries

Deleted entries

Copyright: Richard Foote Consulting
Services 50

Deletes/Updates reduce Deletes/Updates reduce
occurrence of index values occurrence of index values

• Similar to previous example but a range of values permanently deleted

• Again, sparse deletions as fully deleted leaf blocks are recycled

Copyright: Richard Foote Consulting
Services 51

Large Volume Of Identical ValuesLarge Volume Of Identical Values

Null – L1
AAA – L2
AAA – L3
BBB – L4
BBB – L5
BBB – L6
BBB – L7

AAA rowid
AAA rowid

AAA rowid
AAA rowid

AAA rowid
AAA rowid
BBB rowid
BBB rowid

BBB rowid
BBB rowid

BBB rowid
BBB rowid

BBB rowid
BBB rowid

BBB rowid
BBB rowid
CCC rowid
CCC rowid

To insert a new value for AAA, Oracle looks to the branch block and
performs the following logic:

1. Is AAA less than AAA. No, it is not less than AAA.

2. Is AAA greater or equal to AAA and less than AAA. No it is not less than AAA

3. Is AAA greater or equal to AAA and less than BBB. Yes, therefore the entry goes
into L3.

Copyright: Richard Foote Consulting
Services 52

Large Volume Of Identical ValuesLarge Volume Of Identical Values
There are a number of issues with this behaviour:

1. The only leaf blocks that can be inserted into are:
• L3 for values of AAA
• L7 for values of BBB or CCC

i.e. the last leaf blocks containing a specific value

2. All other leaf blocks are “isolated” in that they
cannot be considered by subsequent inserts
(assuming only current values)

3. The isolated blocks are ½ empty due to 50-50
block splits

Copyright: Richard Foote Consulting
Services 53

Index RebuildsIndex Rebuilds

• As discussed, most indexes are efficient at allocating and reusing space

• Randomly inserted indexes operate at average 25% free space

• Monotonically increasing indexes operate at close to 0% free space

• Deleted space is generally reusable

• Only in specific scenarios could unused space be expected to be higher
and remain unusable

• So when may index rebuilds be necessary ?

Copyright: Richard Foote Consulting
Services 54

Index RebuildsIndex Rebuilds
• An index rebuild should only be considered under the following

general guideline:
“The benefits of rebuilding the index are greater than the
overall costs of performing such a rebuild”

• Another way to look at this:

“If there are no measurable performance benefits of
performing an index rebuild, why bother ?”

• Another important point:

“If after a rebuild, the index soon reverts back to it’s previous
state, again why bother ?”

• The basic problem with index rebuilds improving performance is
that generally, the ratio of index blocks visited to table blocks
visited is relatively small.

Copyright: Richard Foote Consulting
Services 55

Index vs. Table Block VisitsIndex vs. Table Block Visits
Let’s look first at a theoretical example.

� Index structure before rebuild – pct_used only 50%:
• Height = 3
• Branch blocks = 50 (+ 1 branch block for the root)
• Index Leaf blocks = 20,000

� Index structure after rebuild – pct_used now 100%:
• Height = 3
• Branch blocks = 25 (+1 branch block for root)
• Index Leaf Blocks = 10,000

� Table structure:
• Blocks = 100,000
• Rows = 1,000,000

Copyright: Richard Foote Consulting
Services 56

Index vs. Table Block VisitsIndex vs. Table Block Visits
Example 1 – Single row select on unique index

Cost before rebuild = 1 root + 1 branch + 1 leaf + 1 table = 4 LIOs

Cost after rebuild = 1 root + 1 branch + 1 leaf + 1 table = 4 LIOs

Net benefit = 0% Note CF has no effect in this example

Example 2 – Range scan on 100 selected rows (0.01% selectivity)

Before Cost with worst CF = 1 rt + 1 br + 0.0001*20000 (2 leaf) + 100 table = 104 LIOs

After Cost with worst = 1 rt + 1 br + 0.0001*10000 (1 leaf) + 100 table = 103 LIOs

Net benefit = 1 LIO or 0.96%

Before Cost with best CF = 1 rt + 1 br + 0.0001*20000 (2 leaf) + 0.0001*100000 (10
table) = 14 LIOs

After Cost with best CF = 1 rt + 1 br + 0.0001*10000 (1 leaf) + 10 table = 13 LIOs

Net benefit = 1 LIO or 7.14%

Copyright: Richard Foote Consulting
Services 57

Index vs. Table Block VisitsIndex vs. Table Block Visits
Example 3 – range scan on 10000 selected rows (1% selectivity)

Before cost (worst CF) = 1 rt + 1 br + 0.01*20000 (200 lf) + 10000 table = 10202 LIOs

After cost (worst CF) = 1 rt + 1 br + 0.01*10000 (100 lf) + 10000 table = 10102 LIOs

Net benefit = 100 LIOs or 0.98%

Before cost (best CF) = 1 rt + 1 br + 0.01*20000 (200 lf) + 0.01*100000 (1000 tbl) =
1202 LIOs

After cost (best CF) = 1 rt + 1 br + 0.01*10000 (100 lf) + 1000 table = 1102 LIOs

Net benefit = 100 LIOs 8.32%

Example 4 – range scan on 100000 select rows (10% selectivity)

Before cost (worst CF) = 1 rt + 1 br + 0.1*20000 (2000 lf) + 100000 (tbl) = 102002 LIOs

After cost (worst CF) = 1 rt + 1 br + 0.1*10000 (1000 lf) + 100000 tbl = 101002 LIOs

Net benefit = 1000 LIOs or 0.98%

Before cost (best CF) = 1 rt + 1 br + 0.1*20000 (2000 lf) + 0.1*100000 (10000 tbl) =
12002 LIOs

After cost (best CF) = 1 rt + 1 br + 0.1*10000 (1000 lf) + 10000 tbl = 11002 LIOs

Net benefit = 1000 LIOs or 8.33%

Copyright: Richard Foote Consulting
Services 58

Index vs. Table Block VisitsIndex vs. Table Block Visits

Example 5 – Fast Full Index Scan (100% selectivity) assuming average 10
effective multiblock reads

Cost before rebuild = (1 root + 50 branch + 20000 leaf) / 10 = 2006 I/Os

Cost after rebuild = (1 root + 25 branch + 10000 leaf) / 10 = 1003 I/O

Net benefit = 1003 LIOs or 50%

Copyright: Richard Foote Consulting
Services 59

Index vs. Table Block Visit: Index vs. Table Block Visit:
ConclusionsConclusions

• If an index accesses a ‘small’ % of rows, index fragmentation is
unlikely to be an issue

• As an index accesses a ‘larger’ % of rows, the number of Index
LIOs increases but the ratio of index reads to table reads remains
constant

• Therefore caching characteristics of index becomes crucial as the
size of index and % of rows accessed increases

• The clustering factor of the index is an important variable in the
performance of an index and the possible effects of index
fragmentation as it impacts the ratio of index/table blocks accessed

• Index Fast Full Scans are likely to be most impacted by index
fragmentation as access costs are directly proportional to index size

Copyright: Richard Foote Consulting
Services 60

Index Rebuild: Case Study 1Index Rebuild: Case Study 1

� Non ASSM, 8K block size tablespace
� Index created with a perfect CF
� Indexed columns represents just over 10% of

table columns
� Test impact of differing index fragmentation

on differing cardinality queries

Copyright: Richard Foote Consulting
Services 61

Index Rebuild: Case Study 1Index Rebuild: Case Study 1

create table test_case (id number, pad char(50), name1 char(50), name2
char(50), name3 char(50), name4 char(50), name5 char(50), name6
char(50), name7 char(50), name8 char(50), name9 char(50));

begin
For i in 1..1000000 loop
insert into test_case values (i, '**',
'David Bowie', 'Ziggy Stardust', 'Major Tom', 'Thin White Duke', 'Aladdin
Sane', 'David Jones', 'John', 'Sally', 'Jack');
End loop;
End;
/

create index test_case_idx on test_case(id, pad) pctfree 50;

Copyright: Richard Foote Consulting
Services 62

Index Rebuild: Case Study 1Index Rebuild: Case Study 1
SQL> select * from test_case where id = 1000; -- select 1 row

SQL> select * from test_case where id between 100 and 199; -- select 100 rows

SQL> select * from test_case where id between 2000 and 2999; -- select 1,000 rows

SQL> select * from test_case where id between 30000 and 39999; -- select 10,000 rows

SQL> select * from test_case where id between 50000 and 99999; -- select 50,000 rows

SQL> select /*+ index(test_case) */ * from test_case where id between 300000 and
399999; -- select 100,000 rows

SQL> select /*+ index(test_case) */ id from test_case where id between 1 and 1000000;
-- select 1,000,000 rows

SQL> select /*+ index_ffs(test_case) */ id, pad from test_case where id between 1 and
1000000; -- select 1,000,000 rows via a Fast Full Index Scan

Note: Statements run several times to reduce parsing and caching differences

Copyright: Richard Foote Consulting
Services 63

Index Rebuild: Case Study 1Index Rebuild: Case Study 1
The table had a total of 1,000,000 rows in 76,870 blocks while the index
had a clustering factor of 76,869 (i.e. perfect).

Index recreated with differing pctfree values and tests rerun.

HEIGHT BR_BLKS LF_BLKS PCT_USED

0 pctfree 3 14 8,264 100

25 pctfree 3 18 11,110 75

50 pctfree 3 27 16,947 49

75 pctfree 3 55 35715 24

Copyright: Richard Foote Consulting
Services 64

Index Rebuild: Case Study 1Index Rebuild: Case Study 1
Case Study 1 % of Table 0 pctfree 25 pctfree 50 pctfree 75 pctfree

1 row 0.001% 0:0.01 0:0.01 0:0.01 0:0.01

100 rows 0.01% 0:0.01 0:0.01 0:0.01 0:0.01

1,000 rows 0.1% 0:0.01 0:0.01 0:0.01 0:0.01

10,000 rows 1% 0:0.03 0:0.03 0:0.03 0:0.03

50,000 rows 5% 0:10:05 0:12.06 0:17.00 0:18:06

100,000 rows 10% 0:22:06 0:23.08 0:27.09 0:33.06

1,000,000 rows 100% 3:57:09 4:43:03 5:12.05 5:29:08

1,000,000 FFS 100% 0:18.06 0:19:02 0:24.01 0:36.06

Copyright: Richard Foote Consulting
Services 65

Case Study 1: CommentsCase Study 1: Comments
• All indexes resulted in identical executions plans

• No difference with statements that access < 10,000 rows

• Differences emerge between 10000 and 50000 due to caching
restrictions (25,000 approximate point of some differences)

• 50000 rows marks point where index hint required to force use
of hint, therefore index issues somewhat redundant

• General exception Index Fast Full Scan where performance is
most effected and directly proportional is index size

• Summary: queries up to 25,000 rows (2.5%) little to no
difference, 25,000 – 50,000 some differences emerged, 50,000+
index not used anyway

Copyright: Richard Foote Consulting
Services 66

Index Rebuild: Case Study 2Index Rebuild: Case Study 2

� Similar to case 1 but importantly with a
much worse CF

� Also size of index designed to increase
index height when poorly fragmented

� Non-Unique values results in less efficient
branch entries management as second pad
column required

Copyright: Richard Foote Consulting
Services 67

Index Rebuild: Case Study 2Index Rebuild: Case Study 2
begin
insert into test_case2 values (0, '**', 'David Bowie', …);
for a in 1..100 loop

insert into test_case2 values (1, '**', 'David Bowie', …);
for b in 1..10 loop

insert into test_case2 values (2, '**', 'David Bowie', …);
for c in 1..10 loop

insert into test_case2 values (3, '**', 'David Bowie', …);
for d in 1..5 loop

insert into test_case2 values (4, '**', 'David Bowie', …);
for d in 1..2 loop

insert into test_case2 values (5, '**', 'David Bowie', …);
for e in 1..10 loop

insert into test_case2 values (6, '**', 'David Bowie', …);
end loop;

end loop;
end loop;

end loop;
end loop;

end loop;
commit;
end;
/

Copyright: Richard Foote Consulting
Services 68

Index Rebuild: Case Study 2Index Rebuild: Case Study 2
SQL> select * from test_case2 where id = 0; -- 1 row

SQL> select * from test_case2 where id = 1; -- 100 rows

SQL> select * from test_case2 where id = 2; -- 1,000 rows

SQL> select * from test_case2 where id = 3; -- 10,000 rows

SQL> select /*+ index (test_case2) */ * from test_case2 where id = 4; -- 50,000 rows

SQL> select /*+ index (test_case2) */ * from test_case2 where id = 5; -- 100,000 rows

SQL> select /*+ index (test_case2) */ * from test_case2 where id = 6; -- 1,000,000 rows

SQL> select /*+ ffs_index (test_case2) */ id, pad from test_case2 where id = 6; --
1,000,000 rows

Note: Statements run several times to reduce parsing and caching differences.
May not necessarily be appropriate with first execution times being relevant.

Copyright: Richard Foote Consulting
Services 69

Index Rebuild: Case Study 2Index Rebuild: Case Study 2
The table had a total of 1,161,101 rows in 82,938 blocks while the index
had a clustering factor of 226,965 (i.e. much worse than case 1).

HEIGHT BR_BLKS LF_BLKS PCT_USED

0 pctfree 3 79 9,440 100

25 pctfree 3 107 12,760 75

50 pctfree 4 163 19,352 49

75 pctfree 4 346 41,468 24

Copyright: Richard Foote Consulting
Services 70

Index Rebuild: Case Study 2Index Rebuild: Case Study 2
Test Case 2 % of Table 0%

pctfree
25% pctfree 50% pctfree 75% pctfree

1 row 0.000086% 0:0.01 0:0.01 0:0.01 0:0.01

100 rows 0.0086% 0:0.01 0:0.01 0:0.01 0:0.01

1,000 rows 0.086% 0:0.01 0:0.01 0:0.01 0:0.01

10,000 rows 0.86% 0:27:02 0:27.06 0:29.03 0:35.03

50,000 rows 4.31% 0:41:00 0:42.03 0:53.07 1:03.04

100,000 rows 8.61% 0:52.03 1:01:04 1:20.08 2:08.02

1,000,000 rows 86.12%
4:01.07 4:57:02 5:54:00 6:12:02

1,000.000 FFS 86.12% 0:18.01 0:21:09 0:23.07 0:36.05

Copyright: Richard Foote Consulting
Services 71

Case Study 2: CommentsCase Study 2: Comments
• Index is clearly less efficient and generates slower execution times

for statements > 1,000 rows

• All indexes resulted in identical executions plans

• No difference with statements that access < 1,000 rows

• Differences emerge with >= 10,000 rows although only significantly
so for pct_free >= 50%

• Because of the poorer CF, 10,000 rows marks the boundary where
index is automatically used by the CBO

• Again, Fast Full Index Scan performance directly proportional to
index size

• Summary: index only an issue for a very narrow cases with between
10,000 – 50,000 rows and 50%+ pct_free

Copyright: Richard Foote Consulting
Services 72

Index Selectivity Index Selectivity ““ZonesZones””

� Green Zone: Index fragmentation makes no difference
because of low LIOs and high caching characteristics making
index rebuilds pointless. Most OLTP queries belong here.

� Orange Zone: Selectivity generates significant index I/Os
and index caching is reduced. Likelihood increases closer to
index appropriateness boundary. If ratio of index/table reads
impacted, some performance degradation possible.

� Red Zone: Selectivity so high that index rarely used by CBO,
therefore index fragmentation generally not an issue.
Exception Index Fast Full Scan execution plans.

Copyright: Richard Foote Consulting
Services 73

High Selectivity: Which Indexes ?High Selectivity: Which Indexes ?
� With selectivity crucial, how to find candidate indexes ?
� Oracle9i, the v$sql_plan view provides useful info:

select hash_value, object_name, cardinality, operation, options
from v$sql_plan
where operation = 'INDEX' and object_owner = 'BOWIE' and cardinality > 10000
order by cardinality;

HASH_VALUE OBJECT_NAME
---------- --
CARDINALITY OPERATION OPTIONS
----------- ------------------------------ ------------------------------
2768360068 TEST_EMPTY_ASSM_IDX
10011 INDEX FAST FULL SCAN

� Note: SQL efficiency still of paramount importance !!

Copyright: Richard Foote Consulting
Services 74

Index Rebuild Index Rebuild –– Inserts ?Inserts ?
� Impact on subsequent inserts needs to be considered
� Simple demo with index rebuilt with pctfree = 0:

SQL> create table test_insert_0 (id number, value varchar2(10));
Table created.
SQL> begin
2 for i in 1..500000 loop
3 insert into test_insert_0 values (i, 'Bowie');
4 end loop;
5 end;
6 /

PL/SQL procedure successfully completed.
SQL> create index test_insert_0_idx on test_insert_0(id) pctfree 0;
Index created.

Copyright: Richard Foote Consulting
Services 75

Index Rebuild Index Rebuild –– Inserts ?Inserts ?
Now insert 10% of rows evenly across the index.

SQL> begin
2 for i in 1..50000 loop
3 insert into test_insert_0 values (i*10, 'Bowie');
4 end loop;
5 end;
6 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:24.03
SQL> analyze index test_insert_0_idx validate structure;
Index analyzed.
SQL> select pct_used from index_stats;
PCT_USED

55

So by adding approximately 10% of data, the pct_used has plummeted to
only 55%. It kind of makes the index rebuild a little pointless !!

Copyright: Richard Foote Consulting
Services 76

Index Rebuild Index Rebuild –– Inserts ?Inserts ?
Repeat same test but with an index rebuilt with pctfree = 10
SQL> create index test_insert_10_idx on test_insert_10(id) pctfree 10;
Index created.
SQL> begin
2 for i in 1..50000 loop
3 insert into test_insert_10 values (i*10, 'Bowie');
4 end loop;
5 end;
6 /
PL/SQL procedure successfully completed.
Elapsed: 00:00:15.04 ===> faster than the previous pctfree 0 example.
SQL> analyze index test_insert_10_idx validate structure;
Index analyzed.
SQL> select pct_used from index_stats;
PCT_USED

99

And we notice that the pct_used value remains much higher.

Copyright: Richard Foote Consulting
Services 77

Index Rebuild Index Rebuild –– Inserts ConclusionInserts Conclusion

� Be very careful of pct_free value with rebuilds
� Ensure there is sufficient free space to avoid

imminent block splits
� Can impact subsequent insert performance
� Can lead to large amounts of unused space due to

block splits making the rebuild pointless

Copyright: Richard Foote Consulting
Services 78

Index Height Index Height –– Rebuild Factor ?Rebuild Factor ?
� The simple answer is no
� Most index rebuilds do not result in a height reduction
� If the pct_used is high, rebuild is pointless
� If index creeps over height boundary, rebuild is still

pointless as:
– Instead of reading root, now read root + branch resulting in

just 1 additional cached I/O
– Index eventually will grow anyways

� Rebuilding an index purely because of its height is yet
another myth

Copyright: Richard Foote Consulting
Services 79

Conditions for RebuildsConditions for Rebuilds
� Large free space (generally 50%+), which indexes rarely reach, and
� Large selectivity, which most index accesses never reach, and
� Response times are adversely affected, which rarely are.
� Note requirement of some free space anyways to avoid insert and

subsequent free space issues
� Benefit of rebuild based on various dependencies which include:

– Size of index
– Clustering Factor
– Caching characteristics
– Frequency of index accesses
– Selectivity (cardinality) of index accesses
– Range of selectivity (random or specific range)
– Efficiency of dependent SQL
– Fragmentation characteristics (does it effect portion of index frequently used)
– I/O characteristics of index (serve contention or I/O bottlenecks)
– The list goes on and on ….

Copyright: Richard Foote Consulting
Services 80

Other Rebuild Issues To ConsiderOther Rebuild Issues To Consider

� More efficient index structures can reduce stress
on buffer cache. Harder to formulate but
requires consideration

� If you have the resources and you have the
appropriate maintenance window, then the cost
vs. benefit equation more favorable to rebuild
– Benefit maybe low but perhaps so is the relative cost

� Rebuild or Coalesce ?

Copyright: Richard Foote Consulting
Services 81

Index CoalesceIndex Coalesce

� More efficient, less resource intensive, less
locking issues than rebuild option

� Can significantly reduce number of leaf blocks in
some scenarios

� Requires sum of free space to exceed 50% +
pctfree in consecutive leaf blocks

� However, as generally needs excessive 50%+
freespace for rebuild to be effective

� Does not reduce index height

alter index bowie_idx coalesce;

Copyright: Richard Foote Consulting
Services 82

Index CoalesceIndex Coalesce

1 2 3 4 5 6 7 8 9

1,2,3 4 6,7 8,95

Copyright: Richard Foote Consulting
Services 83

SummarySummary
� The vast majority of indexes do not require rebuilding
� Oracle B-tree indexes can become “unbalanced” and

need to be rebuilt is a myth
� Deleted space in an index is “deadwood” and over time

requires the index to be rebuilt is a myth
� If an index reaches “x” number of levels, it becomes

inefficient and requires the index to be rebuilt is a myth
� If an index has a poor clustering factor, the index needs

to be rebuilt is a myth
� To improve performance, indexes need to be regularly

rebuilt is a myth

